A Fast and Accurate Global Maximum Power Point Tracking Method for Solar Strings under Partial Shading Conditions
Authors
Abstract:
This paper presents a model-based approach for the global maximum power point (GMPP) tracking of solar strings under partial shading conditions. In the proposed method, the GMPP voltage is estimated without any need to solve numerically the implicit and nonlinear equations of the photovoltaic (PV) string model. In contrast to the existing methods in which first the locations of all the local peaks on the P-V curve are estimated and next the place of the GMPP is selected among them, the suggested method estimates directly the GMPP without any need for the evaluation of the other local peaks. The obtained GMPP voltage is then given as a reference value to the input voltage controller of a DC-DC boost converter to regulate the output voltage of the solar string at the GMPP voltage in various irradiation conditions. Furthermore, the values of the temperature and irradiation level of each PV module within the PV string are estimated, and therefore, the proposed method does not need to thermometers and pyranometers. This makes it as a reliable and low-cost GMPP tracking method. The theoretical aspects on which the proposed GMPP algorithm is established are also discussed. The comparison of the numerical results of the suggested GMPP tracking scheme with the existing methods at different environmental conditions shows the satisfactory operation of the proposed technique from the speed and accuracy point of views.
similar resources
A Novel Algorithm to Find Maximum Power Point for Solar Systems under Partial Shading
In this paper, a new two-stage control algorithm to reach the maximum power point in photovoltaic (PV) systems under partially shaded conditions is presented. This algorithm tracks the maximum power point without any need to measure the open circuit voltage, short circuit current and making use of any extra switches. To achieve maximum power performance, the method firstly selects the relevant ...
full textMaximum Power Point Tracker for Photovoltaic Systems Based on Moth-Flame Optimization Considering Partial Shading Conditions
The performance of photovoltaic (PV) systems is highly dependent on environmental conditions. Due to probable changes in environmental conditions, the real-time control of PV systems is essential for exploiting their maximum possible power. This paper proposes a new method to track the maximum power point of PV systems using the moth-flame optimization algorithm. In this method, the PV DC-DC co...
full textGlobal Maximum Power Point Tracking of Photovoltaic Array under Partial Shaded Conditions
Efficiency of the PV module can be improved by operating at its peak power point so that the maximum power can be delivered to the load under varying environmental conditions. This paper is mainly focused on the maximum power point tracking of solar photovoltaic array (PV) under non uniform insolation conditions. A maximum power point tracker (MPPT) is used for extracting the maximum power from...
full textFuzzy Based Maximum Power Point Tracking in Grid Connected Pv Systems under Partially Shading Conditions
To convert solar energy more viable, the efficiency of solar array systems should be maximized. An easier approach to maximizing the efficiency of solar array systems is Maximum Power Point Tracking (MPPT). MPPT is used in photovoltaic (PV) systems to maximize the output power of photovoltaic array, irrespective of the irradiation and temperature conditions. Many conventional MPPT fails to atta...
full textA New Maximum Power Point Tracking Method for PEM Fuel Cells Based On Water Cycle Algorithm
Maximum Power Point (MPP) tracker has an important role in the performance of fuel cell (FC) systems improvement. Tow parameters which have effect on the Fuel cell output power are temperature and membrane water. So contents make the MPP change by with variations in each parameter. In this paper, a new maximum power point tracking (MPPT) method for Proton Exchange Membrane (PEM) fuel cell is pr...
full textMaximum Power Point Tracking Using Fuzzy Logic Controller under Partial Conditions
This study proposes a fuzzy system for tracking the maximum power point of a PV system for solar panel. The solar panel and maximum power point tracker have been modeled using MATLAB/Simulink. A simulation model consists of PV panel, boost converter, and maximum power point tack MPPT algorithm is developed. Three different conditions are simulated: 1) Uniform irradiation; 2) Sudden changing; 3)...
full textMy Resources
Journal title
volume 8 issue 3
pages 245- 256
publication date 2020-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023